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structures.

INTRODUCTION

The design of ocean structures, similar to that of ships, is for the most
part based on empirical rules and codes, and relies heavily on past
experience. Although such experience may be extensive in the case of ships,
the design of which is the result of centuries of mostly careful and slow
evolution, it is necessarily limited for ocean structures, as exemplified by
various recent failures. The need for a more rationally-based design
procedure for ocean structures is now well recognized.

Qcean structures operate in an environment which is random in nature.
The development and implementation of probabitistic models for predicting
the loads acting on an ocean structure have been the subject of extensive
research in recent years. On the other hand, it is the stochastic prediction of -
the response of an ocean structure to environmental loads which provides
the significant information necessary for its rational design; this area has yet
to be fully investigated.

Whereas linear system theory is a well developed body of kniowledge, the
application of which is relatively straightforward, the severe limitations of

linear models are now recognized in many situations involving ocean

‘Nontinearities play an 1mpor§nt role in the design of moored floating

structures. In particular, the response to loads in unusual or extreme



conditions, which constitutes an essential part of the design process, is
essentially governed by nonlinear effects.

The aim of this report is to review the currently available methods for
predicting the response of noflinear dynamic systems to stochastic
excitations, together with their relative advantages and limitations, and
particular reference to ocean engineering applications

The problem may, in general, be stated as follows. Let us consider a
nonlinear dynamic system described by the [following input-output
relationship!: |

y(t)) = x(t) (0.1)

where x(t) and y(t) are the excitaticn and response stochastic processes, and
? is a nonlinear autonomeous (i.e. time-invariant) and generally causal

functionai, therefore:

Plyltd} = Plyloy; T s t) = %) (0.2)

It is required to derive some statistical properties of the response process
y{t) when the deterministic system ? and stochastic excitation x() are
given.

Such a general theory of the same scope as the linear theory, is not yet
available, and thus progress toward a satisfactory stochastic theory of ship
and platform motions has been rather slow.

~-lgpper-cese Roman symbols denote-sceler functions end operators-iower-case Romen————————
symbols denote scalar variables, the same notations in bold are used for vectorial and
matrix quantities, wheress calligraphic Roman symbdols represent functionals.



Nonlinear stochastic modelling is a relatively new and difficult field,
drawing on the latest advances in nonlinear system theory and stochastic
processes. All the existing approaches are, in some way, limited in scope, by
assuming particular properties of both the excitation (Gaussian, harmonic,
white noise, etc.) and the system (time-invariance, memoryless, analytic,
etc.); moreover, most of these techniques yield a limited description of the
response {generally second-order properties or probabilistic structure).




1- EXACT METHODS

Historically, the mathematical approaches to nonlinear transformations of
Gaussian processes evolved quite independently from two fundamental
theories: the spectral analysis mostly in connection with signal processing in
the field of communication, and the Fokker-Planck equation in the theory of
Brownian motions. Both theories are reviewed below (sections 1-1 and 1-3).
~In addition, several fundamental thecrems related to the behavior of

memoryless systems are examined (section 1-2).

1-1- Spectral Analysis Theory: Linear Systems -
The theory governing the behavior of linear autonemous dynamic

systems:

L{y(t)} = x(t) (1.1)

driven by stationary Gaussian signals is a well developed body of knowledge
and we will not reproduce it here [Lin, 1967, Papoulis, 1984, Lin et al,, 19386].

Let us simply state that the spectral analysis of linear systems originated
during the first half of the century, and culminated with the much

celebrated-work of Rice 11944 & 1945} — - e -




The method s essentially based on the Wiener-Khintchine relations
[Wiener, 1930] and the convolution theorem together with the assumption of
stationarity of the response process. They yield relatively straightforward
frequency domain expressions (power spectrum) of the second-order
statistics of linear autonomous transformations of stationary Gaussian
processes.

For muture reference it is essential to emphasize that the response of such

b

transformations may be entirely described by its mean value and second-’

order statistics. These second-order statistics can be evaluated in the
frequency domain through the power spectrum or in the time domain
through the autocorrelation function.

Statistical moments of order 1 and 2, however, do not sufficiently
describe the behavior of random processes whenever deviation from
normality is substantial, even if the transformation is linear. Furthermore,
associated with this difficulty is the fact that nonlinear transformations,
which are to be discussed below, do not preserve Gaussian character.

The application of linear spectral theory to describe the motions of ships
in irregular waves appeared with the work of St. Denis and Pierson {1953l
Later, St. Denis [1973, 1974a, 1974t & 1975] and Yamanouchi {1974]
discussed the limitations of linear models in various situations involving

offshore platforms as well as ships.

1-2- Nonlinear Static Systems -

Although the theory of nonlinear system with memory remains our

primary concern, it Is instructive to examine the, quite extensive, litterature

associated with these memory effects.

- on static-transformationsin-order-to-gain-further-insight-into the difficulties —
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Nonlinear static systems can be understood as nonlinear transformations
without memory, thersfore the response of such systems only depends upon

present values of the excitation process:

F(y(t) = x(t) (1.2)

In the case of a Gaussian excitation, Price's [1958 & 1964, Baum, 1966}
and Bussgang's [1952] theorems yields useful information on output second-
order statistics. Whereas the case of a general excitation can be found in
Abramson {19671 Generalization of Price's theorem to the functional version
of (1.2} can be found in Gorman and Zaborszky {19638]. While, the response
probability distribution ¢an be easily obtained by a simple transformation in
most cases [Bendat, 19851,

A number of important contributions to the theory of memoryless
transformations of stochastic processes are reproduced in Haddad [1975].

1-3- Fokker-Planck Equation: Nonlinear Dynamic Systems -

The origins of the Fokker-Planck equation are intimately linked to the
theory of Brownian motions, named after an English botanist Robert Brown
who observed in 1827 that small particles suspended in fluids undergo
erratic movements.

The very first satisfactory statistical theory of Brownian motions
appeared with Einstein in 1905 through the diffusion equation. However it
was not until a decade later that the combined works of Smoluchowski,

Fokker, Planck, and Ornstein among others lead to considerable

generalization of -Einstein’s pioneering work: the Fokker-Planck equation:
Whersas, further mathematical aspects of the theory were examined by
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Wiener, Kolmogorov, and others [Uhlenbeck, and Ornstein, 1930, Ming Chen
Wang, and Uhlenbeck, 1945]

Essentially, the method relies on the fact that the response of a discrete
dynamic system subjected to a Gaussian white noise behaves as a continuous
multidimensional Markov process. Then, it is possible to show that Markov
processes must satisfy a consistency equation the Chapman-Kolmogorov or

Smoluchowski equation:

PYs ts |y ty) = L, Plys t3 Uz t2) Plyz, t2 g b Ay b (L Kty (1.3)

The Smoluchowski equation, in turn, leads to the response transition
probability density function p(z, s | y, t), solution of a partial differential
equation; the Fokker-Planck-Kolmogorov equation [Caughey, 1971, Ming
Chen Wang and Uhlenbeck, 1945]:

The steady-state solution of equation (1.4) is the probability density
function p(y).

The appealing aspect of an approach based on the Fokker-Planck-
Kolmogorov equation is that the derived solution is an exact one. However,
the assumptions underlying the existence of an analytic stationary solution
to equation (1.4) are quite restrictive: in general the nonlinearities are
required to be of static nature only, and the excitation is a Gaussian process

the spectral density of which is that of a white noise [Caughey, 19632 &

1971 ' -



A pracise survey of the nonlinear systems which ¢an be solved exactly by
means of the Fokker-Planck equation can be found in Caughey [1971, 1982a
& 1982bland Ludwig {1975].

Concerning second-order properties of the response, virtually all the
Markov processes the power spectrum of which can be evaluated exactly are
the one which are Gaussian (Ming Chen Wang and Uhlenbeck, 1945]
Therefcre, the case of second-order statistics of nonlinear transformations
remains unsolved at least from the theory of Markov processes.

Roberts [1931] derived the amplitude distribution of the slow drift

oscillations of moored vessels from the Fokker-Planck equation.




2- APPROXIMATE METHODS

Elaborating upon the two fundamental techniques described in the
previous section. more general nonlinear transformations of random
processes, for which no exact or closed-form solutions are known, can be
discussed.

Methods which relies on the theory of Markov processes and Itd
stochastic calculus are described in section 2-3, while those essentially based
on spectral analysis and functional calculus are addressed in sections 2-2
(linearization), 2-4 (perturbations), and 2-5 (functional series). |

Let us start this chapter on approximate methods with a rather
systematic, but yet cumbersome technique which ¢onsists in simulating the

equations of motion in the time domain.

2-1- Time Domain Simulation -

Time domain digital simulation of the equations of motion remains the
foremost way of predicting the response of a nonlinear system to some
prescribed input.

Apart from its systematic aspect, such a method exhibits many well-
known drawbacks, mostly linked to the prohibitive amount of calculations

necessary—In particularthe cassof -3-stochastic excitation, a spectral or

probabilistic description of the rzsponse becomes rather cumbersome using a




time domain simulaticn, the nature of which is essentially deterministic.
Clearly, pre- and post-processing of the time simulation of equations of
motion generally include respectively simulation of the excitation power
spectrum and spectral analysis of the response time series. Both of which
must be handled with care and are quite demanding in computer capacity if
done properly.

For these reasons, stochastic frequency domain techniques are generally
praferred, whenever possible, W the more expensive time domain
techniques.

Nevertheless, it has been applied to the description of ship motions.
Dalzell [1971, 1973] showed, through a time-stepping procedure, that for
most of the practical dynamic¢ rangs, the distribution of roll maxima does
not correspond to the distribution of the maxima of a random Gaussian
process predicted by theory, ie. the Cartwright and Longuet-Higgins
distribution. Pérez y Pérez [1974] modeled the motions of a steerad ship in
waves by a linear convolution integral and frequency independent

nonlinearities considered to be part of the exciting forces, these

10

nonlinearities being associated with the rudder forces, viscous roll damping

and restoring forces and moments. When compared with experiments, the
roll motion prediction proves to be not as accurate as the yaw and rudder
motion predictions.

Besides digital computer simulations of the equations of motion, analog
measurements of electronic or electro-mechanical circuits are possible and
may prove to be useful when the system in hand can be modeled correctly
in that manner {Broch, 1977].




2-2- Equivalent Linearization -
Linearizing the system comes next among the available techniques.

Basically, an “equivalent” linear system:

LG ()} = x(t) (2.1)

is substituted to the original nonlinear one; equations (0.1). The price to be
paiad for such a drastic simplification of the nonlinear model lies in the choice
of a linearization procedure, which does not foillow any strict guidelines, as
well as in an incomplete description of the system which ignores the specific
features? of nonlinear systems: the system is thus globally assumed to
behave as a linear one.

In the case of a deterministic excitation, Kryloff and Bogoliuboff [1947]
invoque equivalent energy balance during one ¢ycle.

Drawing upon Kryloff and Bogoliuboff work, the stochastic case is
generally handled in replacing the original nonlinear equations describing

the system, by equivalent linear equations which minimize the mean square

error.

E{F Yt} - LegluDT(Flyt)} - Ledyit))] (2.2)

ZNanlinearities usually have two different effects. The first of these leads to & response
which differs only quanttatively from the tinear response {amplitude modutation),
whilz the second one induces phenomena which are not predictable within the

framework of alinear approach, such as non-Gaussian responge 10 Gaugsian processes .. — .

and certain types of dynamic instabilities, sub- or superharmoni¢ responses
(frequeney modulation), bifurcatons...

11
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in the mean squars sense preclude accurate pradiction of statistics other
than second order ones? Moreover, the available litterature seems to
indicate that the method of equivalent linearization tends to underestimate
the response statistics [Lin, et al, 1936} although no theoretical justification
appears t support this cbeervation.

This method has besn applied to ship rolling in random waves by Kaplan
[1966] (viscous damping) and Vassilopoulos [1971] (viscous damping and
nonlinear restoring moment). A variation of this tecnniqué involves the use
of a describing function in considering the ship as a feedback system [Flower
& Mackerdichian, 19781,

Following the same idea, it is al2o possible to substitute an “equivalent’
nonlinear system to the original systern when, for example, the “squivalent”
nonlinear system belongs to a class of probiems which can be solved {exactly
or not) [Caughey, 1984]. A similar methodology has been proposed by
Jaunet [1984] where a simplified nonlinear model {cascading systems: linear
with memory + nonlinear without memory) of ship rolling in irregular seas is

identified from experimental data .

2-3- White Noise Spectrum Excitation -

The mathematical idealization of white noise excitation4 allows the use of
techniques based on the Fokker-Planck equation as well as Itd calculus. In
this section, nonlinear systems, for which no exact solutions are known, are

considered and approximate response statistics evaluated through these

techniques.

wm{me_imnrmd provided that the eorrefation time of the actusl —— - -

excitation process is small when compared with the relsxation time of the dynamnic
wransformation [Lin, 1967, Lin et sl 1986]



2-3-1- Fokker-Planck Equation -

The forsmost and maybe most restrictive hypothesis related to the
application of the Fokker-Planck equation is that the excitation power
spectrum is that of a white noise. In principle, this assumption may be
removed if one recalls that coloured spectrum may be whitened whenever
they are factorizable? [Schetzen, 1930, Papoulis, 1984]. However, this
possibility is more theoretical than it first appears since it leads to such an
excessive complication of the associated Fokksr-Planck equation that even
numerical solutions are not easily obtained.

Therefore, one 1§ left with approzimate methods which may take mors or
1633 into account the shape of the excitation spectrum. One such method is a
stochastic averaging procedure proposed by Stratonoviteh (1963, 1667] and
applied with some success to the nonlinear roll of ships by Roberts [1982a,
1982b, 1984 & 19851,

When the Fokker-Planck equation (1.4) associated with the nonlinear
system in hand cannot be solved exgactly, a number of approgimate
techniques exist. The method of equivalent nonlinearization (section 2-2)
can be invoqued [Caughey, 1984 & 1936] and has been applied to the case of
an oscillator with nonlinear damping by Kirk [1974). Haddara [1974] used a
perturbation method % solve the Fokker-Planck equation in the case of the
roll motion of a ship.

The Fokker-Flanck equation can also be solved numsrically. The method
of finite differences is used by Ochi [1984, 1986], in the case ¢f the Duffing

oscillator with nonlinear damping driven by a Gaussian white-noise

34 procedure due to Viener [1949].

14



excitation which was assumed to model the surge motion of a tension leg
platform in heavy seas. A Galerkin method with Hermite polynomial
expansion can alse be used. Wen {1975] employed such a numerical scheme
in the case of nonstationary excitations, while Taudin and Rocaboy [1986]
proposed a similar technique in the case of multi-degree-of-freedom marine
structures subjected to general wave excitations. Taudin and Rocaboy [1986]
emphasized that this numerical scheme is about as consuming in computer
time as a time domain simulation, moreover numerical instabilities may
arise and therefore such a technique does not seem, at least for the time

being, to be very useful.

2-3-2- Cumutant Closure -

The statistical moments and cumulants of the response of nonlinear
systems to white noise excitation can be computed through Itd stochastic
calculus [ItS, 1951a & 1951b] from the governing equations. Successive
coupted equalions in the response power moments generally result.

Therefore, an appropriate closure scheme must be used in order Yo obtain

15

approximate closed-form solutions. One such closure scheme relies upon

neglecting cumulants after some prescribed order which represent higher
and higher order measures of the process deviation from normality
[Crandall, 1980, Wu, and Lin, 1934l

Such a closure scheme seems o yield accurate results iCrandall, 1980,
Wu, and Lin, 1384] but has not yield any appiication to ocean engineering

problems so far.




2-4- Perturbation Techniques -

The general feature of perturbation methods is to substitute an infinite
number of linear systems to a nonlinear one through an expansion in terms
of a "small” parameter describing the magnitude of the nonlinearities. In
this way, the nonlinear features of the system disappear. On the other hand,
the system response is now expressed in terms of a, generally infinite, series
(Crandall, 1963]. The difficulty of evaluation of each term generally
increases geometrically as its order in the serfes.

Two fundamental questions then arise; namely the convergence of the
series, as well as the number of terms necessary o get an accurate
description of the solution. The answer to the former is generally not easy
although one may gt a good approdmation of the solution from the
knowiedge of the first few terms only, even when the series diverges. Once
again, the nonlinearities must remain weak {n order to insure both
convergence and accurate prediction of the solution with a limited number of
terms.

Such an expansion procédure has been applied to the nonlinear rotling of

16

ships in random seas, first in the case of viscous damping [Yamanouchi, 1964

& 1968] and later in the case of a static nonlinearity [Flower, 1976]. Both
papers discuss the influence of the nonlinearity on the response power
spectrum,

Among the perturbation techniques, multiple scale methods (spatial
and/or temporal) may be applied to second order low frequency excitation
problems [Triantafyllou, 1978 & 1982, Agnon & Mei, 1983]. Basically, the
general idea underlying the work of Triantafyllou [1979 & 1982] is that the

amplitude, quickly varying motion and a large amplitude, slowly varying

_motions of a floating body may be splitted into two_compensnts: a small



motion. The main hypothesis being to assume that the two motions may be
treated separately, the solution is then written as the sum of the solutions of

the two linear protlems.

2-5- Functional Series Representation Methods -

In most derivations of the equations of motion of {loating bodies such as
shipe and offshore structures, the system is conveniently reduced to a set of
second-order differential equations with frequency-dependent coefficientss,
whether linearity is assumed or not. The simplicity of such a description is
only apparent; it actually represents integral equations in the time domain,
the physical interpretation of which lies in the fact that a structure freely
floating in waves is a space-time system. Various approximations and
integrations are made to reduce it to a time system [Tick, 1959). The price to
te paid to allow such a simplification resides in the memory effect which
appears as we get rid of the space dimensions and is mathematically
described by the integral equations over the past history of the motion.

When the further assumption of linearity is made, the system is
compactly described by its impulse response matrix in the time domain and
by its harmonic response matrix in the frequency domain. The fundamental
importance of these concepts in ship hydrodynamics have been stressed by
Cumming [1962] and later by Bishop, Burcher & Price [1973].

For the nonlinear case, a perturbation technique would represent a
natural generalization of this procedure to handie the noni-linearities. It may

be intuitively thought not as a regular expansion in power series, but rather

17

EThiz dependency is omitted or neglected without much justification among virtually
alf the litteramre reviewsd.



as a ‘power series with memory”, namely, a Volterra functional series
representation technique.

2-5-1- Volterra Functional Series -

The functional series representation of differential, integral and integro-
differential equations originated with the work of Volterra by the end of last
century (cee eg. Volterra [1930] and Barrett [1980b] for a comprehensive
biblicgraphy). Essentially, the input-output relation of a given analytic
system is expanded in a functional power series? which can be formally
obtained, by analegy with Taylor series, through successive functional
derivatives, as defined by Volterra [1920]:

y(t) = g‘ H{x(t)) (2.4)

where the n-th order Volterra functional {s defined by:

A=) = [:L...J_mnn(n,‘rz,...,Tn)x(t-'rl)x(t-'t3)...><(t-‘rn)d11d*tz...d'tn (2.5)

Such a power series is called a Volterra series, and the kernet
hu(Ty, T2, Ty} is called the n-th order Volterra kernel. In the case of a

causal system, the kernel h, must vanish whenever any of its argument is
greater than the time variable t.

It is a “power series with memory”. That it is a power series can be
readily seen by noting that the n-th order Volterra functional A, {x(t)} is a

?Therefore, it does not provide anvthing more then what can otherwise be oblained

series model lies in the formalista as well as the rather advanced body of results related
to its application.

18

through a perturbation technique (section 2-4)._The resl advantage of the Volterra __



homogeneous functional of order n, it is a series with memory since A, {x(t)}
is a n-fold conwolution in time. Clearly, the generalized n-th order Voiterra
functional A, {%,(t),..,%,(t}} is n-linear, by analogy with multilinear function
theory.

Wiener [1958] later applied Voiterra's description of general functional
relationships to nonlinear communication problems. The first systematic
study of the application of the Volterra functional model to physical systems
appeared with the work of Barrett [1963].

Vassilopoulos [1967] discussed the applicability of the Volterra and
Wiener series to the motions ¢of a ship in irregular seas modeled as a
nonlinear autonomous system, together with particular applications to the
cases of wave-induced ship resistance in random seas, as well as uncoupled

nonliftear motions such as roll.

® Determination of the Volterra kernels

The problem of determining the kernels h,(7t,,7,,..,Tn) Or equivalently
the transfer functions® Hy(wy,w,,.,w,) can be understood in two different
ways depending on the problem in hand. |

In the first case, the Volterra kernels are to be determined from
knowledge of a genseral functional relationship of the type (0.1). This
inversion problem admits a solution whenever the functional 7 is analytic,
and its linear part stable {therefore invertible [Barrett, 1963]). In this case,
several methods are possible.

In the direct expansion method, the system equations are manipulated
until they are brought into the form of the Volterra series expansion (2.4}

19

' é'1'h¢3 transfer functions ares n-fold Fourier transforms of the Kernels, and the Fourier
transform is one-to-ocne.
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[Bedrosian & Rice, 1971]. In the case of nonlinear autonomous deterministic

systems?, thece identities lead to algebraic equations in terms of the transfer
functions of any order of the functionals 4, and 7 [Barrett, 1963, Parente,
1970). Such an approach yields directly the transfer functions H, via

frequency association.

The harmonic input method reties on the specific properties of Volterra
transfer functions. Clearly, they <¢an be understood as harmonic response
functions [Bedrostan & Rice, 13711,

In the second case, the Volterra series is determined from simultaneous
measurements of the input and the output functions. This is the case of
identification. Schetzen [1965] proposed a method of measuring the Volterra
kernels ¢f nonlinear systems. Essentially, this approach is based on the n-
lingar properties of n-th order Volterra functional /—:.’5n

e Statistical and Probabilistic Properties of the Response

Once the Volterra series is entirely determined, it is possible to evaluate
statistical properties of it response yit).

Most of the existing works deal with the prediction of second-order
statistics1? of nonlinear autonomous systems driven by ergodic random
Gaussian processes. Essentially, the response autocorrelation function is
evaluated first:

Ry (T = 3 5 B (x()afx(t T} (2.6)

n:1 m=t

9Assuming a deterministic system does not preclude the possibility of stochastic
excitations.

10gssentially because the Volterra and ¥iener functional models were first applied in

connection with signal processing and mean-square estimation in the field of
<comuunication.
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The response power density spsctrum may then be obtained by Fourier
transform of the above equation (2.6). A direct approach leads to the result

derived by Rudko & Weiner [1978]. Clearly, if x(t) is of order &, the response
power density spectrum Sy, (w) thus obtained direclty appears as a power

ceries of g, keeping in mind the homogeneous property of functional Hn For
example, EIAL {x(tNAu{x(t+ T)}] will be of order em*n,

In an alternative approach, proposed by Mircea & Sinnreich [1969], the
terms in (2.0) are reordered, resulting in a single series which turns out to
be closely related to the Wiener -Hermite expansion (section 2-5-2).

Dalzell [1976b & 1982] investizated the applicability of the Volterra series
model to nonlinsar ship rolling, and more in detail of the third degree
Volterra functional [Dalzell, 1932), whers the transfer functions are
evaluated using ths so-called harmonic input method, while the roll
spectrum is evaluated through the Mircea-Sinnreich series.

Dalzell {1976a] and Dalzell and Kira [1979], used this technique again in
the problem of added ship resistance in irregular waves and lateral drift
forces and moment [Kim and Dalzell, 1981, Dalzell, 19861,

Borgman [1982] described the general procedure to take into account
various type of nonlinearities (wave theory, structure motion, drag force,
mooring and free surface effects).

Finally, Bouche & Olagnon [1385a & 1985k analyzed the vibrations of a
fixed circular cylinder in waves where the transfer functions were evaluated
by a direct expansion procedure.

Although second order statistics are essential they only yield an

incomplete description of the response of -nenlinear. systems,-peincipally

when deviation from linearity is significant. In particular, accurate



prediction of the probabilistic structure of the response necessarily involves
evaluation of higher order statistics. Although there does not appear to exist
any general formula, the first few output cumulants of general Volterra
series can be computed from Bedrosian & Rice [1971], which in turn, may
lead to an Edgeworth-series type probability distribution. Yet, quite
surprisingly, there does not seem to exist any application of these ideas.

In the case of second-order autonomous stochastic systems, the
probabilistic description of the response is possible through the Kac-Stegert
methed [Kac and Siegert, 1947) either from the probabilistic density
function of the response (Neal, 1974] or from its mean upcrossing frequency
(Naess, 19851 Ultimately, extrems-value behavior of the marine structure

response may be obtained.

2-5-2- Wiener-Hermite Functional Series -

Nonlinear systern representation by Voterra functionals is but one
technique among the functional repressntation techniques.

Two basic difficulties are associated with the practical application of the
Volterra functional series. The first difficulty arises with the measurement
(identification) of the Volterra kernels/transfer functions of a physical
system, whereas the latter one with the question of convergence of the
resulting series.

To circumvent these problems, Wiener constructed a new set of
orthogonal functionals K,l{x(t)}, with respect to a Gaussian white noise input,
determined from the Volterra functionals [Wiener, 1958, Barrett, 1963,
Schetzen, 1980, Rugh, 1981]. The orthogonality relations are:

22

E[Kn{x(t}}/f,“{x(tvr)}] =0 n=m (2.0



23

Orthogonalization of the Volterra series (2.4), through a Gram-schmidt

orthogonalization procedure, leads to the Wiener series:

y(t) = nf Kafx(t)} (2.8)

Because the convergence of an orthogonal series is a convergence in the
mean, the class of nonlinear systems that can be described by the Wiener
functionals is much larger than the class that can be described by a Volterra
series [Schetzen, 19580].

Tet another and simpler derivation of the Wiener functionals expansion
relative % a Gaussian white noise can be achieved through expansion in
some set of orthogonal polynomials. A suitable choice of orthogonal
functional polynomiale are the Grad Hermite polynomials hel® [Barrett, 1963
& 1964]:

="
00

K1)} = J J_:..I_:kn('rl,Tz,...,rn)heﬁﬂ'(x; t-Ty, . T Ty 4T, (2.9)

where the Wiener kernels k,(1;,7,,..,T,) may be determined through the

orthogonality condition (2.7):

nl Sun kn(Tl,Tz,...,Tn) = E[g(t)he(n}(x, t"'l'i, t-Tz, - t“Tn:‘] (2.10)

The Wiener-Hermite expansion can be easily generalized to the case of a

non-white Gaussian excitation process by redefining appropriate Hermite

T funetionials [Barvett, 1980 & 19828 T T T T



Clearly, the Wiener-Hermite functional series can be understood as an
orthogonal expansion with memory relative to a Gaussian input process.

It will be now shown how advantage can be taken from such an
orthogonal expansion in both the measurement of the kernels and transfer

Tunctions and the derivation of output second-order statistics.

® Determination of the Wiener-Hermite kernels

The Wiener kernels k,(1y,7,,..,T,) and transfer functions K,(wy,w,,...w,)
can be determined from knowledge of the Volterra kernels and transfer
functions [Barrett, 1980a & 1982, Rugh, 1981]

However, one of the appealing aspects of these orthogenal expansions lies
in the relative simplicity W identify the corresponding kernels and transfer

functions:

JmJ:]:nl K l0 1O R (01 - T ) R (0= T 34040 = Rypolady( T,y T
(2.11)
N Ea{Wy, ., 004) = Synelndi) (W, W/ S (Wi ... S {ay)

(2.12)
The use of the Wiener expansion in analog identification of nonlinear
systems, driven by stationary Gaussian white noise, appeared with the work
of Lee and Schetzen [1965] (equation (2.11)). Whereas French and Butz
[1873] showed how the Wiener may be measured in the frequency domain
through equation (2.12). Extensive applications to physiological systems can

be found in Marmarelis and Marmarelis [1978) and Marmarelis [1979].

The application of identification techniques of linear autonomous systems
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-t chip and offshore strueture-meotions-is-wellestablished—Essenttattycross-
spectrum techniques (equation (2.12)) are used in order to evaluate the



linear transfer function. The superfority of the cross-spectrum over the
auto-spectrum technique is not only that it yields complete response
characteristics, including both amplitude and phase relations, but also that
cross-spectrum is free from the effect of any orthogonalll noise included in
the response [Yamanouchi, 1974l.

In this respect, such an appreach, together with an auto-spectrum
technique allows a convenient measure of the adequacy of the linear model
through coherence functions [Bendat, 1982, 1983 & 1985).

The cross-spectrum appreach (2.12) to the identification of nonlinear
systems has been mentioned for some time in the oc¢san engineering
litterature, but without any reference to its mathematical foundation: the
Wiener-Hermite expansion.

For ezample, as éarly az 1961, Tick {1661} and Hasselman [1966] showed
that the nonlinear transfer functions can be obtained from high order
statistical motnents of the ship motions {equations (2.12)). This underlines
the fact that when a nonlinear system is driven by a stationary Gaussian
noise, the output is, in general non-Gaussian and therefore it cannot be
anymore reasonably described by its first two moments alone.

Dalzell [1974] demonstrated by {dentification that a second order Volterra
polynomial moedel is a reasonable representation of the added ship resistance
produced by waves, He used identification techniques to evaluate the linear
and quadratic kernels through the cross-spectrum and cross-bispectrum
respectively. Assuming the Gaussian random wave model valid, Neal [1974]
and Borresen {1978] treated the nonlinear response of a ship up to the
second order, 1.6, taking the low-frequency excitations into account.

25

Horthogonsl in the sense of equaton (2.7).
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A quite general and advanced review of the identification techniques of
seécond and third order Volterra systems can be found in Bendat [1985),
where particular emphasis is placed on squars-law {with or without sign)
and cubic systems.

& somewhat systematic approach to identify a general transformation
giving the inline and transverse forces on a vertical cylinder element in
random waves has been undertaken by Vugts and Bouquet {1985]. The
adequacy of the models to describe the relationship between input and
output is evaluated by a total coherence function [Bendat, 1985). This work
lead to a revalidation of the Morison equation, together with the associated
dilemma of an appropriate selection of the etnpirical coefficients. Moreover,
among their conclusions was emphasized the cosfficient dependency on the

input conditions which is in contradiction with the "hlack box” concept.

8 Statistical and Probabilistic Properties of the Response
KEeeping in mind the orthogonality of the Wiensr-Hermite expansion
{equation (2.8)), the response autocorrelation function ¢an be written as the

single sum;

Ryg(Th = 5 EIR, (x),{x(trr} (2.13)

The response power density spectrum may then be obtained by Fourier

transform of the above equation (2.13) [Barrett, 1950a}:
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where 5 denotes the Dirac distribution. This expression turns out to ¢oincide
with the response power density spectrum derived by Mircea and Sinnreich
[1969] and Bedrosian and Rice (197 1] and simply consists in a rearangement
of the terms in the Volterra series. It is interesting to mention that equation
(2.14) provides a decomposition of the output power spectrum into its
frequency components [Barrett, 1982].

In order to illustrate this frequency resotution, let us consider the simple
and {dealized case of the narrow-band excitation spectrum with modal
frequency wy and mean square So. Sww (W) = 5u5(w-we), upon substitution in

equation (2.14) the response power density spectrum results:

Sug{w) = 2 nlfRy(wy,...00)12 Sg? S(t-nig) (2.15)

It is clear from this example that nonlinear response occurs not only at
the frequency of excitation but at superharmonic frequencies multiple of the
fundamental cne.

The output frequency spectrum S, (w) of analytic nonlinear systems can
be evaluated either as a power series (by Fourier transform of equation
(2.6)) or as the single sum (2.14). In practice such series must be truncated,
thus (2.6) yields the lowest order nonlinear terms whereas (2.14) yields the
first few harmonics. Clearly, choice of either ceries should depend upon the

problem in hand.
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CONCLUSION

& general theory for nonlinear response to stochastic processes should
satisfy three afttributes: simplicity of implementation, accuracy of the
resulting response statistics, and versatility of the msthod. Clearly, such a
theory is not available, and one is left with the various techniques described
and the associated dilemma of choosing the one which holds the most
promises with rezard to the problem in hand.

Furthermore, the singular lack of comprehensive full-scale as well as
model measurements of situations involving marine vehicles greatly reduces
the possibility of assessing the validity and adequacy of these techniques.

Therefore, extensive experiments, involving both load and response
measurements, should be undertaken with the double objective of
identifying the parameters of the dynamic system and characterizing the

techniques the most adequate.
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